Size variation and collapse of emphysema holes at inspiration and expiration CT scan: evaluation with modified length scale method and image co-registration
نویسندگان
چکیده
A novel approach of size-based emphysema clustering has been developed, and the size variation and collapse of holes in emphysema clusters are evaluated at inspiratory and expiratory computed tomography (CT). Thirty patients were visually evaluated for the size-based emphysema clustering technique and a total of 72 patients were evaluated for analyzing collapse of the emphysema hole in this study. A new approach for the size differentiation of emphysema holes was developed using the length scale, Gaussian low-pass filtering, and iteration approach. Then, the volumetric CT results of the emphysema patients were analyzed using the new method, and deformable registration was carried out between inspiratory and expiratory CT. Blind visual evaluations of EI by two readers had significant correlations with the classification using the size-based emphysema clustering method (r-values of reader 1: 0.186, 0.890, 0.915, and 0.941; reader 2: 0.540, 0.667, 0.919, and 0.942). The results of collapse of emphysema holes using deformable registration were compared with the pulmonary function test (PFT) parameters using the Pearson's correlation test. The mean extents of low-attenuation area (LAA), E1 (<1.5 mm), E2 (<7 mm), E3 (<15 mm), and E4 (≥15 mm) were 25.9%, 3.0%, 11.4%, 7.6%, and 3.9%, respectively, at the inspiratory CT, and 15.3%, 1.4%, 6.9%, 4.3%, and 2.6%, respectively at the expiratory CT. The extents of LAA, E2, E3, and E4 were found to be significantly correlated with the PFT parameters (r=-0.53, -0.43, -0.48, and -0.25), with forced expiratory volume in 1 second (FEV1; -0.81, -0.62, -0.75, and -0.40), and with diffusing capacity of the lungs for carbon monoxide (cDLco), respectively. The fraction of emphysema that shifted to the smaller subgroup showed a significant correlation with FEV1, cDLco, forced expiratory flow at 25%-75% of forced vital capacity, and residual volume (RV)/total lung capacity (r=0.56, 0.73, 0.40, and -0.58). A detailed assessment of the size variation and collapse of emphysema holes may be useful for understanding the dynamic collapse of emphysema and its functional relation.
منابع مشابه
Weight Preserving Image Registration for Monitoring Disease Progression in Lung CT
We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan compared with intensities in the deformed baseline image indicate local loss of lung tissue that is ...
متن کاملImpact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer
AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The m...
متن کاملEvaluation of Absorbed Dose of Critical Organ in Rando Phantom under Head, Abdomen and Pelvis Spiral CT Scan by Thermo Luminescent Dosimetery - TLD
Background & Objectives: Computed tomography (CT) represents 11% of all diagnostic radiology procedures but it contributes to almost 67% of the total effective dose to the human population. In head and neck CT which consist of 1/3 of total CT scans, other critical organs such as lenses and thyroid are in the radiation field. Also in the abdomen and pelvis scan, irradiation of ovaries is unavoid...
متن کاملPaired inspiratory/expiratory volumetric thin-slice CT scan for emphysema analysis: comparison of different quantitative evaluations and pulmonary function test.
PURPOSES The aim of the study was to use three-dimensional high-resolution CT scan data sets in inspiration and expiration for the quantitative evaluation of emphysema. Using an advanced dedicated semiautomatic analysis tool, the functional inspiratory/expiratory shifts of emphysema volume and clusters were quantified. The pulmonary function test (PFT) served as the clinical "gold standard." ...
متن کاملSignificance of emphysema observed on computed tomography scan in asthma.
presence and extent of emphysema can be determined by visual assessment of areas of abnormally low attenuation or by objective quantification based on the attenuation values. HR-CT scans at 1 cm intervals were studied to determine whether the relative area of lung occupied by attenuation values lower than a given threshold could be used as an indication of emphysema [24]. The strongest correlat...
متن کامل